$\gamma = 97.31 \ (3)^{\circ}$

Z = 2

V = 1446.2 (6) Å³

Mo $K\alpha$ radiation

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[*u*-agua-2:1' κ^2 O:O-agua- $2\kappa O$ -(2-fluorobenzoato- $1\kappa^2 O, O')(\mu_2$ -2-fluorobenzoato-2':1 κ^2 O:O')bis(μ_3 -2fluorobenzoato)-2':1:2k⁴O:O,O':O';- $1:2:1'\kappa^{5}F,O:O,O':O'-dilead(II)$]

Bi-Song Zhang

College of Materials Science and Chemical Engineering, Jinhua College of Professions and Technology, Jinhua, Zhejiang 321017, People's Republic of China Correspondence e-mail: zbs_jy@163.com

Received 4 July 2008; accepted 18 July 2008

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.017 Å; R factor = 0.038; wR factor = 0.094; data-to-parameter ratio = 16.7.

In the title compound, $[Pb_2(C_7H_4FO_2)_4(H_2O)_2]_n$, one Pb^{II} atom is coordinated by seven O atoms and one F atom from five 2-fluorobenzoate ligands, and the other Pb^{II} atom is coordinated by five O atoms from four 2-fluorobenzoate ligands and three water molecules, resulting in distorted PbO₇F and PbO₈ polyhedra. The 2-fluorobenzoate ligands bridge Pb atoms, giving rise to a one-dimensional chain structure extending along the [100] direction. The polymeric chains are connected via C-H···O hydrogen bonds and π - π interactions, with an interplanar distance of 3.46 (1) Å. An intramolecular $O-H \cdots F$ interaction is also present.

Related literature

For related literature, see: Morsali & Mahjoub (2005); Xiao & Morsali (2007); Zhang (2004, 2005, 2006a,b,c); Zhang et al. (2005); Zhu et al. (1999).

Experimental

Crystal data

$[Pb_2(C_7H_4FO_2)_4(H_2O)_2]$
$M_r = 1006.84$
Triclinic, P1
a = 7.1016 (14) Å
b = 14.794 (3) Å
c = 15.096 (3) Å
$\alpha = 111.56 \ (3)^{\circ}$
$\beta = 95.32 \ (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR: Higashi, 1995) $T_{\min} = 0.082, T_{\max} = 0.223$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.094$ S = 1.036646 reflections 397 parameters

 $\mu = 11.71 \text{ mm}^{-1}$ T = 290 (2) K $0.44 \times 0.19 \times 0.13 \text{ mm}$

14182 measured reflections 6646 independent reflections 5329 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$

3 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 3.74 \text{ e} \text{ Å}^{-1}$ $\Delta \rho_{\rm min} = -2.48 \text{ e} \text{ Å}^{-3}$

Table 1 Selected bond lengths (Å).

Pb1-O4	2.480 (6)	Pb2-O2	2.517 (5)
Pb1-O2	2.489 (5)	Pb2-O7	2.534 (6)
Pb1-O1	2.551 (6)	Pb2-O5	2.592 (6)
Pb1-O8	2.574 (5)	Pb2-O10	2.599 (6)
Pb1-O9	2.621 (6)	Pb2-O8	2.603 (5)
Pb1-O3	2.642 (6)	Pb2–O9 ⁱⁱ	2.670 (6)
Pb1-O6 ⁱ	2.766 (6)	Pb2-O7 ⁱⁱⁱ	2.999 (6)
Pb1-F3 ⁱⁱ	2.856 (8)	Pb2-O1 ⁱⁱ	2.804 (5)

Symmetry codes: (i) -x + 1, -y, -z; (ii) x + 1, y, z; (iii) -x + 2, -y, -z.

Table 2	
Hydrogen bond	a

Hydrogen-bond	geometry	(A,	°).
---------------	----------	-----	-----

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O7-H7A\cdots O6^{i}$	0.82	2.15	2.881 (8)	148
$O7 - H7B \cdots O5^{iii}$	0.82	2.66	3.360 (8)	144
$O10-H10A\cdots O3^{ii}$	0.82	2.07	2.892 (8)	174
O10−H10B···O4	0.82	2.22	2.856 (8)	135
$O10-H10B\cdots F2$	0.82	2.44	3.161 (13)	147
$C19-H19\cdots O3^{iv}$	0.93	2.56	3.364 (13)	145

Symmetry codes: (i) -x + 1, -y, -z; (ii) x + 1, y, z; (iii) -x + 2, -y, -z; (iv) -x, -v, -z + 1

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The author gratefully acknowledges financial support from the Education Office of Zhejiang Province (grant No. 20051316).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2143).

References

Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan. Morsali, A. & Mahjoub, A. R. (2005). *Solid State Sci.* **7**, 1429–1437. Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122. Xiao, H.-P. & Morsali, A. (2007). Solid State Sci. 9, 155-158.

Zhang, B.-S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 483-484.

Zhang, B.-S. (2005). Z. Kristallogr. New Cryst. Struct. 220, 73-74.

Zhang, B.-S. (2006a). Acta Cryst. E62, m2645-m2647.

Zhang, B.-S. (2006b). Z. Kristallogr. New Cryst. Struct. 221, 191–194.

Zhang, B.-S. (2006c). Z. Kristallogr. New Cryst. Struct. 221, 355-356.

Zhang, B.-S., Zhu, X.-C., Yu, Y.-Y., Chen, L., Chen, Z.-B. & Hu, Y.-M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 211–212.

Zhu, H.-G., Xu, Y., Yu, Z., Wu, Q.-J., Fun, H.-K. & You, X.-Z. (1999). Polyhedron, 18, 3491–3495.

Acta Cryst. (2008). E64, m1055-m1056 [doi:10.1107/S1600536808022678]

catena-Poly[μ -aqua-2:1' $\kappa^2 O$:O-aqua-2 κO -(2-fluorobenzoato-1 $\kappa^2 O$,O')(μ_2 -2-fluorobenzoato-2':1 $\kappa^2 O$:O')bis(μ_3 -2-fluorobenzoato)-2':1:2 $\kappa^4 O$:O,O':O';1:2:1' $\kappa^5 F$,O:O,O':O'-dilead(II)]

B.-S. Zhang

Comment

We have studied the metal complexes of halogen-substituted benzoic acid (*X*–C₆H₄COOH; *X* = F, Cl, Br and I) (Zhang, 2004, 2005; Zhang *et al.*, 2005; Zhang, 2006*a*,b,c). The related crystal structures can be found, such as [Pb(phen)_n(NO₂)*X*] (phen = 1,10-phenanthroline; *X* = CH₃COO⁻, NCS⁻ and ClO₄⁻) (Morsali & Mahjoub, 2005), [Pb₃(bpy)(H₂O)₅(sip)₂].0.5bpy.2H₂O (sip = 5-sulfoisophthalate; bpy = 2,2'-bipyridine) (Xiao & Morsali, 2007) and PbI₂(*L*) (*L* = bpy, phen) (Zhu *et al.*, 1999). We report here the synthesis and structure of the title compound, a new one-dimensional Pb^{II} coordination polymer.

In the title compound, the Pb1 atom is coordinated by seven O atoms and one F atom from five 2-fluorobenzoate ligands to complete a significantly distorted PbO₇F polyhedron. The Pb1—O bond lengths are in the range of 2.480 (6) to 2.766 (6) Å and the Pb1—F bond length is 2.856 (8)Å (Table 1). The Pb2 atom is coordinated by five O atoms from four 2-fluorobenzoate ligands and three water molecules to complete a significantly distorted PbO₈ polyhedron. The Pb2—O bond lengths are in the range of 2.517 (5) to 2.999 (6)Å (Table 1). The 2-fluorobenzoate ligands bridge the Pb atoms, giving rise to a one-dimensional chain structure extending along the [100] direction (Fig. 2). There are intrachain O—H…O hydrogen bonds between the coordinated water molecules and the carboxylate O atoms of the 2-fluorobenzoate ligands (Table 2). The polymeric chains are connected *via* C—H…O hydrogen bonds and π – π stacking interactions between the benzene rings, with an interplanar distance of 3.46 (1) Å, into a two-dimensional supramolecular structure (Fig. 3).

Experimental

Freshly prepared PbCO₃ (0.140 g, 0.52 mmol), 2-fluorobenzoic acid (0.035 g, 0.25 mmol) in CH₃OH/H₂O (15 ml; 1:2 v/v) were mixed and stirred for *ca* 2 h. Subsequently, the resulting suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 423 K for 5 d. After the autoclave was cooled to room temperature, the solid was filtered off. The resulting colorless filtrate was allowed to stand at room temperature for one month, affording colorless block crystals suitable for X-ray analysis.

Refinement

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of water molecules were located on a difference Fourier map and fixed with O—H = 0.82Å and $U_{iso}(H) = 1.5U_{eq}(O)$. The highest residual electron density was 0.78Å from atom Pb2 and the deepest hole 0.71Å from atom Pb2.

Figures

Fig. 1. The asymmetric unit of the title compound, together with symmetry-related atoms to complete the coordination units. Displacement ellipsoids are drawn at the 35% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1 - x, -y, -z; (ii) 1 + x, y, z; (iii) 2 - *x*, -*y*, -*z*.]

Fig. 2. View of one-dimensional chain structure extending along the [100] direction.

Fig. 3. The C—H···O hydrogen bonds (dashed lines) and the π - π stacking interactions in the title compound. [Symmetry code: (iv) -x, -y, 1 - z.]

$catena - Poly[\mu-aqua-2:1'\kappa^2O:O-aqua-2\kappa O-(2-fluorobenzoato-1\kappa^2O,O')(\mu_2-2)(\mu_2-2\kappa^2O,O')(\mu_2-2\kappa^2O,$ 2':1x²O:O')bis(µ₃-2-fluorobenzoato)- 2':1:2x⁴O:O,O':O';1:2:1'x⁵F,O:O,O':O'-dilead(II)]

Crystal data	
[Pb ₂ (C ₇ H ₄ FO ₂) ₄ (H ₂ O) ₂]	Z = 2
$M_r = 1006.84$	$F_{000} = 936$
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.312 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.1016 (14) Å	Cell parameters from 14100 reflections
<i>b</i> = 14.794 (3) Å	$\theta = 3.0-27.5^{\circ}$
c = 15.096 (3) Å	$\mu = 11.71 \text{ mm}^{-1}$
$\alpha = 111.56 \ (3)^{\circ}$	T = 290 (2) K
$\beta = 95.32 \ (3)^{\circ}$	Block, colorless
$\gamma = 97.31 \ (3)^{\circ}$	$0.44\times0.19\times0.13~mm$
$V = 1446.2 (6) \text{ Å}^3$	
Data collection	

Rigaku R-AXIS RAPID diffractometer	6646 independent reflections
Radiation source: rotating anode	5329 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
Detector resolution: 10 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$

T = 290(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -8 \rightarrow 9$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -19 \rightarrow 18$
$T_{\min} = 0.082, \ T_{\max} = 0.223$	$l = -19 \rightarrow 19$
14182 measured reflections	

Refinement	ţ
------------	---

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_0^2) + (0.0382P)^2 + 11.3431P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
6646 reflections	$\Delta \rho_{max} = 3.74 \text{ e} \text{ Å}^{-3}$
397 parameters	$\Delta \rho_{min} = -2.48 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pb1	0.50250 (4)	0.06503 (2)	0.265288 (19)	0.02816 (8)
Pb2	0.99101 (4)	0.11234 (2)	0.13887 (2)	0.03456 (9)
F1	0.8986 (13)	0.3238 (6)	0.1926 (7)	0.106 (3)
F2	0.9276 (14)	0.3801 (7)	0.5078 (9)	0.145 (4)
F3	-0.3272 (8)	-0.0400 (6)	0.3676 (5)	0.0707 (19)
F4	1.0244 (18)	0.2764 (11)	-0.0872 (11)	0.180 (6)
01	0.3833 (7)	0.1887 (4)	0.2019 (4)	0.0382 (12)
O2	0.6657 (7)	0.1535 (4)	0.1739 (4)	0.0343 (12)
O3	0.3924 (8)	0.2018 (4)	0.4107 (4)	0.0424 (13)
O4	0.6947 (8)	0.2189 (4)	0.3891 (4)	0.0417 (13)
O5	0.8814 (9)	0.1620 (5)	-0.0029 (5)	0.0533 (17)
O6	0.5976 (8)	0.0707 (4)	-0.0775 (4)	0.0377 (12)
O7	0.7609 (8)	-0.0319 (4)	0.0120 (4)	0.0425 (13)
H7A	0.6855	-0.0566	0.0382	0.064*
H7B	0.8141	-0.0784	-0.0152	0.064*
O8	0.8336 (8)	0.0170 (5)	0.2355 (4)	0.0442 (14)
09	0.1307 (8)	0.0018 (5)	0.2258 (4)	0.0427 (14)
O10	1.0501 (8)	0.2362 (5)	0.3173 (4)	0.0490 (15)
H10A	1.1424	0.2256	0.3465	0.073*
H10B	0.9746	0.2651	0.3505	0.073*
C1	0.5762 (13)	0.2909 (6)	0.1437 (6)	0.0391 (18)
C2	0.7517 (15)	0.3433 (7)	0.1545 (8)	0.053 (2)
C3	0.790 (2)	0.4252 (8)	0.1307 (11)	0.086 (4)

H3	0.9146	0.4587	0.1389	0.103*
C4	0.635 (3)	0.4537 (10)	0.0945 (11)	0.097 (5)
H4	0.6530	0.5102	0.0807	0.117*
C5	0.455 (2)	0.4012 (10)	0.0783 (10)	0.082 (4)
Н5	0.3580	0.4227	0.0496	0.098*
C6	0.396 (3)	0.3144 (9)	0.1011 (7)	0.105 (6)
H6	0.2716	0.2803	0.0912	0.126*
C7	0.5377 (11)	0.2061 (6)	0.1744 (5)	0.0306 (15)
C8	0.5995 (12)	0.3522 (6)	0.5128 (6)	0.0380 (17)
C9	0.4447 (16)	0.3912 (8)	0.5579 (7)	0.056 (2)
Н9	0.3217	0.3540	0.5411	0.067*
C10	0.482 (2)	0.4869 (8)	0.6279 (8)	0.074 (4)
H10	0.3817	0.5141	0.6570	0.089*
C11	0.660 (2)	0.5406 (8)	0.6543 (9)	0.077 (4)
H11	0.6803	0.6037	0.7021	0.093*
C12	0.814 (2)	0.5043 (8)	0.6121 (8)	0.075 (4)
H12	0.9369	0.5418	0.6296	0.090*
C13	0.7761 (15)	0.4092 (8)	0.5425 (8)	0.058 (2)
C14	0.5595 (11)	0.2510 (6)	0.4324 (5)	0.0328 (16)
C15	-0.0168 (12)	-0.0643 (6)	0.3273 (6)	0.0349 (16)
C16	0.1421 (14)	-0.1041 (7)	0.3439 (8)	0.054 (2)
H16	0.2446	-0.0985	0.3111	0.064*
C17	0.1563 (18)	-0.1518 (9)	0.4069 (9)	0.073 (3)
H17	0.2674	-0.1756	0.4181	0.087*
C18	0.0000 (17)	-0.1632 (8)	0.4532 (8)	0.065 (3)
H18	0.0045	-0.1968	0.4945	0.078*
C19	-0.1581 (15)	-0.1259 (8)	0.4385 (7)	0.057 (3)
H19	-0.2618	-0.1333	0.4701	0.068*
C20	-0.1660 (12)	-0.0773 (7)	0.3773 (6)	0.0426 (19)
C21	-0.0202 (10)	-0.0121 (5)	0.2587 (5)	0.0292 (15)
C22	0.7003 (14)	0.2145 (6)	-0.1082 (6)	0.046 (2)
C23	0.849 (2)	0.2749 (9)	-0.1202 (9)	0.072 (3)
C24	0.828 (3)	0.3368 (10)	-0.1663 (12)	0.108 (6)
H24	0.9346	0.3763	-0.1729	0.129*
C25	0.650 (3)	0.3397 (10)	-0.2026 (11)	0.113 (7)
H25	0.6327	0.3816	-0.2348	0.136*
C26	0.491 (2)	0.2812 (9)	-0.1926 (9)	0.088 (4)
H26	0.3698	0.2864	-0.2180	0.105*
C27	0.501 (3)	0.2134 (9)	-0.1455 (8)	0.101 (6)
H27	0.3952	0.1736	-0.1392	0.121*
C28	0.7316 (12)	0.1442 (6)	-0.0584 (6)	0.0389 (18)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Pb1	0.02153 (14)	0.03441 (15)	0.03085 (15)	0.00615 (10)	0.00427 (10)	0.01469 (12)
Pb2	0.02253 (14)	0.05183 (19)	0.03065 (16)	0.00657 (12)	0.00338 (11)	0.01749 (14)
F1	0.098 (6)	0.095 (6)	0.116 (7)	-0.014 (5)	0.001 (5)	0.045 (5)

F2	0.087 (6)	0.111 (7)	0.172 (10)	-0.004 (5)	0.023 (7)	-0.014 (7)
F3	0.039 (3)	0.129 (6)	0.083 (4)	0.034 (3)	0.027 (3)	0.075 (4)
F4	0.120 (9)	0.226 (14)	0.235 (15)	-0.030 (9)	0.001 (10)	0.162 (13)
01	0.025 (3)	0.051 (3)	0.044 (3)	0.008 (2)	0.009 (2)	0.023 (3)
O2	0.028 (3)	0.042 (3)	0.042 (3)	0.011 (2)	0.011 (2)	0.024 (3)
O3	0.031 (3)	0.049 (3)	0.038 (3)	0.002 (3)	0.006 (2)	0.008 (3)
O4	0.031 (3)	0.046 (3)	0.037 (3)	0.006 (2)	0.007 (2)	0.003 (3)
05	0.042 (4)	0.074 (4)	0.047 (4)	-0.009 (3)	-0.009 (3)	0.037 (3)
O6	0.031 (3)	0.041 (3)	0.040 (3)	0.000 (2)	0.003 (2)	0.018 (3)
07	0.036 (3)	0.041 (3)	0.046 (3)	0.006 (3)	0.008 (3)	0.013 (3)
08	0.026 (3)	0.071 (4)	0.055 (4)	0.019 (3)	0.015 (3)	0.041 (3)
O9	0.028 (3)	0.055 (4)	0.055 (4)	0.010 (3)	0.011 (3)	0.031 (3)
O10	0.033 (3)	0.064 (4)	0.043 (3)	0.011 (3)	0.005 (3)	0.013 (3)
C1	0.053 (5)	0.034 (4)	0.036 (4)	0.019 (4)	0.018 (4)	0.014 (3)
C2	0.052 (6)	0.049 (5)	0.055 (6)	0.005 (4)	0.004 (5)	0.018 (5)
C3	0.111 (11)	0.047 (6)	0.111 (11)	0.003 (7)	0.049 (9)	0.039 (7)
C4	0.162 (16)	0.062 (8)	0.105 (11)	0.047 (10)	0.049 (11)	0.059 (8)
C5	0.125 (12)	0.069 (8)	0.077 (9)	0.052 (8)	0.024 (8)	0.044 (7)
C6	0.240 (19)	0.079 (8)	0.039 (6)	0.116 (11)	0.046 (8)	0.039 (6)
C7	0.031 (4)	0.038 (4)	0.022 (3)	0.006 (3)	0.004 (3)	0.010 (3)
C8	0.044 (5)	0.043 (4)	0.028 (4)	0.011 (4)	0.004 (3)	0.014 (3)
С9	0.063 (6)	0.059 (6)	0.045 (5)	0.016 (5)	0.016 (5)	0.014 (5)
C10	0.109 (10)	0.053 (6)	0.057 (7)	0.034 (7)	0.035 (7)	0.005 (5)
C11	0.126 (12)	0.041 (6)	0.053 (7)	0.011 (7)	0.020 (7)	0.004 (5)
C12	0.092 (9)	0.049 (6)	0.053 (7)	-0.018 (6)	0.006 (6)	-0.004 (5)
C13	0.054 (6)	0.063 (6)	0.055 (6)	0.014 (5)	0.016 (5)	0.018 (5)
C14	0.034 (4)	0.039 (4)	0.022 (3)	0.004 (3)	0.000 (3)	0.010 (3)
C15	0.039 (4)	0.038 (4)	0.030 (4)	0.010 (3)	0.003 (3)	0.015 (3)
C16	0.047 (5)	0.065 (6)	0.066 (6)	0.023 (5)	0.017 (5)	0.039 (5)
C17	0.074 (8)	0.090 (9)	0.083 (8)	0.038 (7)	0.009 (6)	0.059 (7)
C18	0.071 (7)	0.077 (7)	0.066 (7)	0.016 (6)	0.007 (6)	0.051 (6)
C19	0.054 (6)	0.074 (7)	0.054 (6)	0.004 (5)	0.007 (5)	0.039 (5)
C20	0.036 (4)	0.056 (5)	0.042 (5)	0.010 (4)	0.006 (4)	0.025 (4)
C21	0.025 (4)	0.031 (4)	0.034 (4)	0.005 (3)	0.006 (3)	0.015 (3)
C22	0.062 (6)	0.035 (4)	0.038 (5)	-0.005 (4)	0.006 (4)	0.015 (4)
C23	0.078 (9)	0.070 (7)	0.069 (8)	-0.010 (6)	-0.001 (6)	0.037 (6)
C24	0.141 (15)	0.075 (9)	0.111 (12)	-0.036 (9)	-0.004 (11)	0.065 (9)
C25	0.21 (2)	0.060 (8)	0.079 (10)	0.023 (11)	-0.002 (12)	0.043 (8)
C26	0.138 (13)	0.053 (7)	0.068 (8)	0.037 (8)	-0.017 (8)	0.019 (6)
C27	0.191 (15)	0.058 (7)	0.041 (6)	0.079 (9)	-0.037 (7)	0.000 (5)
C28	0.040 (4)	0.047 (5)	0.034 (4)	0.006 (4)	0.005 (3)	0.021 (4)
Geometric po	arameters (Å, °)					

Pb1—O2 2.489 (5) C4—H4 0.9300	
Pb1—O1 2.551 (6) C5—C6 1.469 (1	8)
Pb1—O8 2.574 (5) C5—H5 0.9300	
Pb1—09 2.621 (6) C6—H6 0.9300	

Pb1—O3	2.642 (6)	C8—C13	1.354 (13)
Pb1—O6 ⁱ	2.766 (6)	C8—C9	1.420 (12)
Pb1—F3 ⁱⁱ	2.856 (8)	C8—C14	1.513 (11)
Pb2	2 517 (5)	C9—C10	1 394 (14)
Pb2	2 534 (6)	С9—Н9	0.9300
Pb2	2 592 (6)	C10—C11	1 344 (18)
Pb2	2,599 (6)	C10—H10	0.9300
Pb2—O8	2,603 (5)	C11—C12	1 385 (18)
Pb2—O9 ⁱⁱ	2.670 (6)	C11—H11	0.9300
Pb2—O7 ⁱⁱⁱ	2.999 (6)	C12—C13	1.386 (14)
Pb2—O1 ⁱⁱ	2.804 (5)	C12—H12	0.9300
F1—C2	1.261 (13)	C15—C16	1.381 (12)
F2—C13	1.294 (13)	C15—C20	1.389 (11)
F3—C20	1.351 (10)	C15—C21	1.502 (10)
F4—C23	1.290 (17)	C16—C17	1.381 (13)
O1—C7	1.239 (9)	С16—Н16	0.9300
O2—C7	1.269 (9)	C17—C18	1.390 (16)
O3—C14	1.256 (9)	С17—Н17	0.9300
O4—C14	1.256 (9)	C18—C19	1.347 (15)
05-028	1.227 (10)	C18—H18	0.9300
06-028	1 276 (10)	C19—C20	1 366 (12)
07—H7A	0.8200	C19—H19	0.9300
07—H7B	0.8200	$C^{21} - O^{8^{iv}}$	1.243 (9)
	1 2/3 (0)	C^{22} C^{23}	1 366 (14)
08-021	1.243 (9)	C22—C25	1.300 (14)
09—021 iv	1.247 (9)		1.407 (17)
O9—Pb2 ¹	2.670 (6)	C22—C28	1.517 (11)
O10—H10A	0.8200	C23—C24	1.353 (17)
O10—H10B	0.8200	C24—C25	1.35 (2)
C1—C2	1.344 (13)	C24—H24	0.9300
C1—C7	1.491 (10)	C25—C26	1.39 (2)
C1—C6	1.515 (17)	С25—Н25	0.9300
C2—C3	1.386 (14)	C26—C27	1.433 (16)
C3—C4	1.37 (2)	С26—Н26	0.9300
С3—Н3	0.9300	С27—Н27	0.9300
O4—Pb1—O2	74.52 (19)	C1—C2—C3	125.1 (11)
O4—Pb1—O1	81.3 (2)	C4—C3—C2	116.2 (13)
O2—Pb1—O1	51.13 (16)	С4—С3—Н3	121.9
O4—Pb1—O8	83.7 (2)	С2—С3—Н3	121.9
O2—Pb1—O8	68.63 (17)	C5—C4—C3	121.3 (11)
O1—Pb1—O8	119.76 (17)	С5—С4—Н4	119.3
O4—Pb1—O9	130.77 (18)	С3—С4—Н4	119.3
O2—Pb1—O9	120.83 (18)	C4—C5—C6	127.4 (13)
O1—Pb1—O9	77.90 (17)	C4—C5—H5	116.3
O8—Pb1—O9	145.0 (2)	С6—С5—Н5	116.3
O4—Pb1—O3	50.68 (17)	C5—C6—C1	107.1 (14)
O2—Pb1—O3	106.06 (18)	С5—С6—Н6	126.4
O1—Pb1—O3	72.71 (19)	С1—С6—Н6	126.4

O8—Pb1—O3	131.93 (19)	O1—C7—O2	120.4 (7)
O9—Pb1—O3	80.51 (19)	O1—C7—C1	120.1 (7)
O6 ⁱ —Pb1—F3 ⁱⁱ	104.7 (2)	O2—C7—C1	119.6 (6)
O1—Pb1—O6 ⁱ	85.90 (18)	C13—C8—C9	117.9 (9)
O2—Pb1—O6 ⁱ	77.99 (18)	C13—C8—C14	123.1 (8)
O9—Pb1—O6 ⁱ	69.51 (17)	C9—C8—C14	119.0 (8)
08—Pb1—O6 ⁱ	81.25 (18)	С10—С9—С8	118.2 (11)
O3—Pb1—O6 ⁱ	146.29 (17)	С10—С9—Н9	120.9
O4—Pb1—O6 ⁱ	151.93 (18)	С8—С9—Н9	120.9
O4—Pb1—F3 ⁱⁱ	87.65 (20)	C11—C10—C9	121.4 (11)
O1—Pb1—F3 ⁱⁱ	168.83 (21)	C11—C10—H10	119.3
O3—Pb1—F3 ⁱⁱ	99.11 (19)	С9—С10—Н10	119.3
O9—Pb1—F3 ⁱⁱ	108.72 (18)	C10—C11—C12	121.7 (10)
O2—Pb1—F3 ⁱⁱ	126.98 (22)	C10—C11—H11	119.2
O8—Pb1—F3 ⁱⁱ	59.89 (19)	C12—C11—H11	119.2
O2—Pb2—O7	76.62 (18)	C11—C12—C13	116.6 (11)
O2—Pb2—O5	78.46 (19)	C11—C12—H12	121.7
O7—Pb2—O5	71.2 (2)	С13—С12—Н12	121.7
O2—Pb2—O10	75.17 (18)	F2—C13—C8	123.0 (10)
O7—Pb2—O10	144.72 (19)	F2-C13-C12	112.9 (11)
O5—Pb2—O10	122.4 (2)	C8—C13—C12	124 1 (10)
Ω^2 —Pb2— Ω^8	67 75 (17)	04 - 014 - 03	12.0(7)
02 - Pb2 = 08	75 8 (2)	04	1122.0(7)
$05 - Pb^2 - 08$	137.09(18)	03-014-08	119.1 (7)
$010 - Pb^2 - 08$	74 2 (2)	C16-C15-C20	115.1(7) 115.2(7)
$O_2 P_2 O_2^{ii}$	115 50 (16)	$C_{16} = C_{15} = C_{20}$	120.1(7)
02 - P02 - 09	93 94 (19)	$C_{10} = C_{15} = C_{21}$	120.1(7) 124.7(7)
07 - 102 - 09	157 3 (2)	C_{17} $-C_{16}$ $-C_{15}$	1232(9)
0.10 Pb2 0.00^{11}	79.6 (2)	C17—C16—H16	118.4
$O_{10} = 102 = O_{10}$	48 39 (16)	C15-C16-H16	118.4
$03 - 102 - 01^{ii}$	141 13 (16)	$C_{16} - C_{17} - C_{18}$	118.2 (10)
$05 - Pb2 - 01^{ii}$	108 21 (19)	C16—C17—H17	120.9
$0.7 - Pb^2 - 0.1^{ii}$	142.21 (17)	C18—C17—H17	120.9
0^{8} Pb2 $0^{1^{11}}$	114 69 (18)	C19-C18-C17	120 3 (9)
$09 - Pb2 - 01^{ii}$	150.98 (13)	C19-C18-H18	119.8
010 Pb2 01^{ii}	69.09(17)	C17—C18—H18	119.8
07^{iii} Pb2 01^{ii}	66 45 (15)	C_{18} C_{19} C_{20}	120.0 (10)
07 = F02 = 01	146 84 (16)	$C_{18} - C_{19} - H_{19}$	120.0 (10)
02 - F02 - 07	73 /8 (10)	$C_{10} = C_{10} = H_{10}$	120.0
03 - P02 - 07	77.86 (17)	$F_{20} = C_{10} = C_{10}$	116.8 (8)
$O_1 - r_{02} - O_1$	125.04 (17)	F3_C20_C15	120.2 (7)
$U\delta - PD2 - U/$	123.04(17)	13 - 020 - 013	120.2(7)
09—Pb2—0/"	130.00 (13)	17 - 120 - 13	$123.0(\delta)$
O10—Pb2—O7 ⁱⁱⁱ	135.54 (17)	08 ¹ -C21-O9	120.6 (7)

C7—O1—Pb1	92.7 (5)	O8 ^{iv} —C21—C15	121.9 (6)
C7—O2—Pb1	94.9 (4)	O9—C21—C15	117.5 (7)
C7—O2—Pb2	150.1 (5)	C23—C22—C27	121.0 (11)
Pb1—O2—Pb2	114.7 (2)	C23—C22—C28	122.1 (10)
C14—O3—Pb1	89.7 (4)	C27—C22—C28	116.9 (9)
C14—O4—Pb1	97.4 (5)	F4—C23—C24	114.8 (13)
C28—O5—Pb2	135.0 (5)	F4—C23—C22	121.2 (11)
Pb2—O7—H7A	109.5	C24—C23—C22	124.0 (14)
Pb2—O7—H7B	112.5	C25—C24—C23	118.3 (14)
H7A—O7—H7B	101.3	C25—C24—H24	120.8
C21—O8—Pb1 ⁱⁱ	171.78 (14)	C23—C24—H24	120.8
C21—O8—Pb2 ⁱⁱ	169.90 (14)	C24—C25—C26	121.1 (12)
Pb1—O8—Pb2	109.0 (2)	С24—С25—Н25	119.4
C21—O9—Pb1	146.2 (5)	С26—С25—Н25	119.4
C21 ^{iv} —O9—Pb2	161.84 (13)	C25—C26—C27	123.8 (15)
Pb1 ^{iv} —O9—Pb2	152.03 (16)	С25—С26—Н26	118.1
Pb2—O10—H10A	109.5	С27—С26—Н26	118.1
Pb2—O10—H10B	129.8	C26—C27—C22	111.7 (15)
H10A—O10—H10B	115.8	С26—С27—Н27	124.1
C2—C1—C7	123.9 (8)	С22—С27—Н27	124.1
C2—C1—C6	122.7 (10)	O5—C28—O6	125.0 (8)
C7—C1—C6	113.3 (9)	O5—C28—C22	118.3 (8)
F1—C2—C1	121.4 (9)	O6—C28—C22	116.7 (7)
F1—C2—C3	113.4 (11)		

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) *x*+1, *y*, *z*; (iii) -*x*+2, -*y*, -*z*; (iv) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O7—H7A···O6 ⁱ	0.82	2.15	2.881 (8)	148
O7—H7B···O5 ⁱⁱⁱ	0.82	2.66	3.360 (8)	144
O10—H10A···O3 ⁱⁱ	0.82	2.07	2.892 (8)	174
O10—H10B…O4	0.82	2.22	2.856 (8)	135
O10—H10B…F2	0.82	2.44	3.161 (13)	147
C19—H19…O3 ^v	0.93	2.56	3.364 (13)	145

Symmetry codes: (i) -x+1, -y, -z; (iii) -x+2, -y, -z; (ii) x+1, y, z; (v) -x, -y, -z+1.

Fig. 1

Fig. 2

